Clinical Practice, Clinical Research, and Evidence-Based Practice:
Some Places We Might Like To Go

Randall R. Robey
University of Virginia

From the outset, it is important to note that the ideas expressed in this address emerge from a confluence of three important works. That is, the basics notions described below flow from, and build upon, three original works:

Thompson (2002)
Dollaghan (2007)
Man-Son-Hing, et al. (2002)

The integration of these works leads naturally to evidence-based practice and, most importantly for our purposes, clinical research for informing clinical practice. We begin then with a brief review of our understandings of evidence-based practice (EBP) and then move to a series of possible future states in which clinical research informs clinical practice in meaningful ways. At all points, the premise is that practitioners and researchers mutually benefit and the realized values accrue to the well-being of individuals with communication disorders.

A. Our starting point

1. We know that evidence-based practice is about individuals with communication disorders perceiving important and meaningful changes in their lives brought about by our clinical interventions.

2. Furthermore, we know that EBP is about a single and certain clinician identifying a single and certain clinical decision that she would like to improve in her clinical practice. As a result,

 ... EBP is client specific
 ... EBP is clinician specific
 ... EBP is clinical-action specific
 ... EBP is focused learning; it is the result of a choice for self; it's a process for filling a self-determined gap in one's clinical knowledge or skill.

3. We know that EBP is the integration of …

 a. Current best evidence
 Valid and relevant clinical research
 b. Clinical expertise
 Clinical skills and experience
c. Client values
 i. Client preferences
 ii. Client concerns
 iii. Client expectations

d. Client circumstances
 Individual clinical picture and circumstances

That is, in consultation with a client, an evidence-based practitioner integrates best evidence through her clinical expertise, to decide upon an option for intervention on a case-by-case basis (adapted from Straus, et al., 2005).

4. We are familiar with the five steps of evidence-based practice.
 (adapted from Straus, et al., 2005)
 a. Identify a need for clinical information to improve the quality of clinical decisions and express that need as an answerable clinical question particularizing four dimensions…

 P populations
 I interventions
 C comparative interventions
 O outcomes

 b. Find and access all the literature for relevant and best-available clinical information

 c. Critically appraise that evidence for appropriateness and validity for a client and a practice

 d. Present each client with highest-quality choices and, together, determine a course of care.

 e. Self-evaluate performance as an evidence-based practitioner.

5. We understand that EBP is a means of managing uncertainty
 a. There a very few things we know for certain.

 b. In the absence of absolutes, the best we can do is make decisions with as clear an understanding of the uncertainties as is possible.

 c. EBP is a process for making informed and rational decisions in an uncertain world.

 d. Example:
 One diagnostic protocol has sensitivity of .80, specificity of .80, and a LR+ of 6.0.

 A competing protocol has sensitivity of .90, specificity of .90, and LR+ of 18.0
Is either test so flawed that it is rendered useless?
Is either test guaranteed to ‘get it right’ every time?

Within that context, in using which test do we best manage the uncertainty?

And so we have come to understand that EBP is not about uncovering the one correct thing to do; it’s about doing one or another of the best things under the circumstances in which a choice must be made.

6. Lastly, we understand that EBP is a dynamic continuing process.

What was a best intervention choice for the last client is not necessarily the best choice for the next client.

We evolve and adapt all aspects of the EBP process as new evidence becomes available.

EBP is a dynamic integration of ever evolving clinical expertise and external evidence in day-to-day practice.

With that brief review of the basics completed, let’s turn to a few possibilities for optimizing our future.

B. Possible destination #1

1. Let’s say two things begin happening and continue happening into the foreseeable future.

 a. Scientists consistently report primary outcomes obtained through group-comparison research designs in an EBP friendly fashion.

 Here and elsewhere, that means reporting estimates of effect size for primary outcomes. For this case in particular, it means reporting estimates of effect size with (non)central confidence intervals about them.

 b. Other scientists consistently produce meta-analyses of those primary studies

2. A little background

 An effect size is a metric for indexing departures from the null hypothesis.

 a. It indexes how untenable is the null hypothesis.

 b. In general, when the null hypothesis is true, effect size is zero.

 c. The range of d is $-\infty$ to $+\infty$.

3. Now, let’s suppose that a meta-analysis of treatments for aphasia in the acute period of recovery produces an average effect size of $d = 1.15$ with a .95 confidence interval (CI) of ± 0.65.
Furthermore, suppose that everyone agrees that …

a. A small effect size for this literature is \(d = 0.50 \) (the lower limit of the CI)

b. A medium effect size for this literature is \(d = 1.15 \) (the mean)

c. A large effect size for this literature is \(d = 1.80 \) (the upper limit of the CI)

4. If we can project that far, it is a small step to depict status quo re. extant research within the vertical space of a two dimensional plot. In the following figure, the solid red line represents \(d=0.00 \). A confidence interval encompassing this criterion implies an absence of statistical significance. The solid blue line represents the average effect size in the salient literature. The interrupted blue lines represent the upper and lower bounds of the CI about that mean. The space shaded in yellow then represents a range of status quo for outcomes brought about through treatments for aphasia. That is, the yellow space is the range of what can be called current clinically important outcomes based on relevant research to date.

Clinical Significance

5. Accepting that premise allows a consumer of a new clinical report of an aphasia treatment to assess the clinical importance of the finding with relative ease.
Consider each of the CI’s in the following figure as coming from a new study. A clinically significant finding is one that exceeds status quo ante and so motivates a change in clinical practice (the first two cases on the left).

Clinical Significance

4. Now, let’s take the example a step further. The meta-analysis described above already exists (Robey, 1998). Let’s say that a brand new primary study reports a test of a new treatment for aphasia.
As clinicians, we look at the new effect size along with its CI following the example above. The clinical significance of the new protocol clear to us and all concerned.

Is it within our means to realize that possible future?

5. Let’s consider a different example.

Let’s say that a new technology is designed to achieve the same level of change as an existing technology but at a substantially faster rate and substantially reduced cost.

In this case, $d = 0.00$ is an important outcome in a head-to-head competition.

That is, the new technology achieves the same outcome as the standard but in less time and at less cost. The lesson, of course, is that the magnitude of effect size that is clinically important in any one clinical context is solely determined by whatever constitutes a meaningful departure from status quo ante in that clinical circumstance.

C. Possible destination #2

1. Let’s say two things begin happening and continue happening into the foreseeable future.

 a. Scientists consistently report primary outcomes in an EBP friendly fashion.

 In this example, we focus on estimates of effect size with central confidence intervals about them – for primary outcomes obtained through single-subject research designs.

 b. Other scientists consistently produce meta-analyses of those primary studies

2. A little background

 a. Change in slope between the A₁ and B periods

 i. Efficiency of an intervention

 ii. Rate of change

 iii. Profile of change

 iv. Learning curve
b. Change in level between the A_1 and A_2 periods

 i. Magnitude of change

 ii. Efficacy of an intervention

 iii. Effectiveness of an intervention
c. Estimates of effect size for magnitude of change

\[d = \frac{\bar{X}_{A_2} - \bar{X}_{A_1}}{S_{A_1}} \]

where \(A_1 \) is the baseline period and \(A_2 \) is the maintenance or withdrawal period.

(see Beeson & Robey, 2006, for more detail)

3. For an example, let's say a researcher produces a meta-analysis of single-subject studies of treatments for aphasia aimed at improving syntax.

Single-Subject Direct Treatment Effects

Outcome: Syntax

![Graph showing average effect size with .95 CI](image)

4. Now, how might we index small, medium, and large treatment effects in this literature?
How large an effect size would a new treatment protocol need to produce in order to be considered clinically important?

Could a clinician administering that protocol, calculate the very same estimate of effect size for a direct comparison to research-based outcomes?

Consider a simple Excel® sheet can calculate d and remove the need for any math.

Is it within our means to realize that possible future?

D. Possible destination #3

1. Let’s say two things begin happening and continue happening into the foreseeable future.

 a. Scientists consistently report primary outcomes of diagnostic studies in an EBP friendly fashion.
In this example, we are interested in estimates of effect size with central confidence intervals about them – for primary outcomes obtained through 2X2 classification studies (i.e., LR+ and LR-).

b. Other scientists consistently produce meta-analyses of those primary studies

2. A little background (OK, a lot of background)

a. Outcomes for a diagnostic protocol

i. A negative result (NegRes; “-”) is a range of scores suggesting the absence of disorder

- No disorder
- Status: normal or typical
- Pass

This outcome does not mean that the disorder is not present in truth. An outcome of this type is taken as evidence of the disorder is not present.

The obvious question is: How (un)certain am I in concluding that the evidence is indeed correct?

ii. A positive result (PosRes; “+”) is a range of scores suggesting the presence of disorder

- Status: abnormal
- Status: disorder
- Fail

This outcome does not mean that the disorder is present in truth.

The obvious question is: How (un)certain am I in concluding that the evidence is indeed correct?
b. Sensitivity
i. Sensitivity is the rate of correct PosRes-s.
ii. When sensitivity ≈ 1.00, we have a test property known as a SnNOut
Sensitive test yielding a NegRes rules Out disorder
When a test is a SnNOut, a NegRes almost certainly means the person is not presenting with the disorder

c. Specificity
i. Specificity is the rate of correct NegRes-s.
ii. When specificity ≈ 1.00: we have a test property known as a SpPIn
Specific test yielding a PosRes rules In disorder
When a test is a SpPIn, a PosRes almost certainly means the person is presenting with the disorder.

d. Likelihood ratio positive
LR+ answers the question: How influential should a PosRes be for ruling in the presence of a disorder?
We want this value to be as large as possible.

i. Sensitivity / (1 - Specificity)

ii. The degree of confidence that a person who scores in the positive (affected or disordered) range truly has the target disorder (Dollaghan, 2007).

iii. Scaling LR+

 > 10 Large and often conclusive increase in the likelihood of disorder

 5 - 10 Moderate increase in the likelihood of disorder

 2 - 5 Small increase in the likelihood of disorder

 1 - 2 Minimal increase in the likelihood of disorder

 1 No change in the likelihood of disorder

e. Likelihood ratio negative
LR- answers the question: How influential should a NegRes be for ruling out the presence of a disorder?
We want this value to be as small as possible.
i. (1 - Sensitivity) / Specificity

ii. The degree of confidence that a person scoring in the negative (normal) range is truly free of the target disorder (Dollaghan, 2007).

iii. Scaling LR+

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No change in the likelihood of disorder</td>
</tr>
<tr>
<td>0.5 - 1.0</td>
<td>Minimal decrease in the likelihood of disorder</td>
</tr>
<tr>
<td>0.2 - 0.5</td>
<td>Small decrease in the likelihood of disorder</td>
</tr>
<tr>
<td>0.1 - 0.2</td>
<td>Moderate decrease in the likelihood of disorder</td>
</tr>
<tr>
<td>< 0.1</td>
<td>Large and often conclusive decrease in the likelihood of disorder</td>
</tr>
</tbody>
</table>

3. For the purpose of an example, let's think about a clinician reading two articles.

Each article assesses a different diagnostic battery for differentiating persons presenting with early-stage dementia of the Alzheimer’s type from persons present with primary aging.

The first battery produces a LR+ of 8.00 with a CI of ±1.10 and a LR- of 0.15 with a CI of ±0.10.

The second battery produces a LR+ of 6.00 with a CI of ±1.80 and a LR- of 0.30 with a CI of ±0.15.

All other things being equal, which test does she begin using in her practice?
Importantly, the math can be reduced considerably. A simple Excel® sheet can calculate these values.
Even better: This web page does a much better job of the calculation in that it provides confidence intervals about sensitivity, specificity, LR+, and LR-; it just doesn’t get any better than that.

http://faculty.vassar.edu/lowry/clin1.html

Is it within our means to realize this possible future?
E. Possible destination #4

We get over ‘levels of evidence.’ (drawn heavily from Dollaghan (2007) with adaptations.)

Some research designs are more scientifically rigorous than others.
In general, more rigorous designs produce higher quality evidence.
However, it is very important to note that a design does not by itself define the quality of the scientific evidence it produces.
Let’s examine some properties of research designs.

1. Non-experimental vs. Experimental Research
 a. Non-experimental
 i. Experimenter observes a situation that is unfolding in nature, but does not control or change experimental components.
 b. Experimental
 i. Experimenter constructs a research design for testing a hypothesis.
 ii. Theory/experimental components are determined and operationalized
 iii. Experimenter controls antecedents to data collection

2. Uncontrolled versus Controlled Research
 a. Uncontrolled
 Observations are made of a single group (perhaps a single person) experiencing the experimental condition
 b. Controlled
 Observations are made of one or more groups experiencing the experimental condition -- and a group observed without experiencing the experimental condition.
 The control-group data serves as a reference against which the experimental-group data is compared.

3. Retrospective versus Prospective Research
 a. Retrospective
 A researcher examines existing data. These are observations that have been recorded under non-experimental (natural) conditions.
 b. Prospective
 A research constructs an experiment and collects data under controlled conditions.

4. Random assignment versus Non-Random Assignment
a. Non Random Assignment
 Participants are assigned group membership by convenience or some other method other than random assignment

b. Random Assignment
 For each participant, group assignment is strictly a matter of true randomness.

If we apply those dichotomous groupings serially to primary studies in a flow-chart like fashion, a hierarchy of studies results with designs having more built-in rigor at the top. Only a stringent application of quality indicators can tell us if that rigor is indeed present and just how valid the study really is.

Notice that three strata become obvious. The top tier of studies are various forms of clinical trials. The middle tier consists of research designs mostly used in effectiveness research. The lower tier of studies comprises designs mostly used in pre-trial research.

With some thought, it becomes clear that the quality indicators for each tier are different. Evaluating a study in one tier (e.g., effectiveness research) using quality indicators for another tier (e.g., clinical trials or efficacy research) makes no sense and is indeed counterproductive. What we need is a system for identifying the purpose of a study and then assess the quality with which that purpose is achieved.
5. Q: How do we know when a primary study is a clinical trial?
 A: If we can place a check in every un-shaded box in the following form.

Identifying a Clinical Trial

<table>
<thead>
<tr>
<th>Defining Quality</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>The intervention protocol (IP) is clearly established a priori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a paper about establishing/developing the theoretical basis for a prospective IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a paper about inventing, uncovering, or developing the IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The outcome measure(s) is(are) set and understood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a measurement or psychometric study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The clinical population is clearly defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study assesses the magnitude of efficacy or safety (or both) of the intervention protocol for the first time, or in confirmation, or in some new dimension of efficacy or safety (e.g., direct treatment effect at the impairment level, generalization treatment effect at the activity-limitation level, QoL, adverse effects, harm, specificity, LR+, post-test probabilities)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The study comprises an experimental sample and a control sample obtained through one or more service delivery sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The experimental and control conditions are administered through specially trained and qualified staff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The observed effect is attributed to the protocol and is generalized to the clinical population through statistical inference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The study reports a group research design (e.g., cross over, parallel groups) or a single-subject research design (min: min. ABA with multiple baselines across token type or treatment effect) replications across participants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Q: How do we know when a primary study reports effectiveness research?
A: If we can place a check in every un-shaded box in the following form.

Identifying Effectiveness Research

Study ID: __

<table>
<thead>
<tr>
<th>Defining Quality</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>The intervention protocol (IP) is clearly established a priori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a paper about establishing/developing the theoretical basis for a prospective IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a paper about inventing, uncovering, or developing the IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The outcome measure(s) is(are) set and understood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This is a measurement or psychometric study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The clinical population is clearly defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This study assesses the magnitude of effectiveness or safety (or both) of the IP in some dimension (e.g., direct treatment effect at the impairment level, generalization treatment effect at the activity-limitation level, QoL, adverse effects, harm, specificity, LR+, post-test probabilities)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The study includes a rather large experimental sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The IP is administered as part of regular services provided through a clinical practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The observed effect is attributed to the protocol and is generalized to the clinical population through statistical inference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The study reports a pre-post research design (elaborations are possible) or a single-subject research design (min: min. ABA with multiple baselines across token type or treatment effect) replications across participants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Q: How do we know if a primary study is an instance of pre-trial research?
 A: When neither form can be completed with a check in every un-shaded box.

8. Now, projecting forward, is it a reasonable thing to consider research designs
 as they relate to their intended purpose and then assess their validity in meeting
 that purpose?
 Is it within our means to realize that possible future?

F. Conclusion
 1. Clinical practice can inform clinical research.
 2. Clinical research can be optimized for informing clinical practice.
 3. The processes, and the products coming from them, are imaginable and within
 our means.

References

Lessons Learned from the Aphasia Literature. *Neuropsychology Review, 16*,
161-169.

Disorders*. Baltimore, MD: Paul H. Brookes Publishing Co.,

Man-Son-Hing M, Laupacis A, O’Rourke K, Molnar F, Mahon J, Chan K, Wells G.
(2002). Determining the clinical importance of study results: A review. *Journal of
General Internal Medicine, 17*, 469-476.

Medicine*. London: Elsevier Health Sciences